Rigorous derivation of the equations describing objects called “accretion disk”

Šárka Nečasová
Institute of Mathematics of the Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic.

Abstract

We study the 3-D compressible barotropic Navier-Stokes-(Fourier)- Poisson system describing the motion of a compressible rotating viscous fluid with renormalized gravitation, confined to a straight layer \(\Omega_\epsilon = \omega \times (0, \epsilon) \), where \(\omega \) is a 2-D domain. We shall show that the weak solutions in the 3D domain converge to the strong solution of a rotating 2-D Navier-Stokes-(Fourier)-Poisson system on \(\omega \) as \(\epsilon \to 0 \) for either all times less than the maximal life time of the strong solution of the 2-D system or the initial data are small when the Froude number is small (\(Fr = O(\sqrt{\epsilon}) \)). We consider just the selfgravity force. In the second case we consider a rotating pure 2-D Navier-Stokes-(Fourier) system on \(\omega \) as \(\epsilon \to 0 \) when \(Fr = O(1) \) in the case of the external gravity see [1, 2].

Keywords: Navier–Stokes–Fourier–Poisson system, weak solution, entropy, rotation, accretion disk, thin domains, dimension reduction.

References
